3 resultados para gentamicin

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To examine 397 strains of Salmonella enterica of human and animal origin comprising 35 serotypes for the presence of aadB, aphAI-IAB, aadA1, aadA2, bla(Carb(2)) or pse1, bla(Tem), cat1, cat2, dhfr1, floR, strA, sul1, sul2, tetA(A), tetA(B) and tetA(G) genes, the presence of class 1 integrons and the relationship of resistance genes to integrons and antibiotic resistance. Results: Some strains were resistant to ampicillin (91), chloramphenicol (85), gentamicin (2), kanamycin (14), spectinomycin (81), streptomycin (119), sulfadiazine (127), tetracycline (108) and trimethoprim (45); 219 strains were susceptible to all antibiotics. bla(Carb(2)), floR and tetA(G) genes were found in S. Typhimurium isolates and one strain of S. Emek only. Class 1 integrons were found in S. Emek, Haifa, Heidelberg, Mbandaka, Newport, Ohio, Stanley, Virchow and in Typhimurium, mainly phage types DT104 and U302. These strains were generally multi-resistant to up to seven antibiotics. Resistance to between three and six antibiotics was also associated with class 1 integron-negative strains of S. Binza, Dublin, Enteritidis, Hadar, Manhattan, Mbandaka, Montevideo, Newport, Typhimurium DT193 and Virchow. Conclusion: The results illustrate specificity of some resistance genes to S. Typhimurium or non- S. Typhimurium serotypes and the involvement of both class 1 integron and non-class 1 integron associated multi-resistance in several serotypes. These data also indicate that the bla(Carb(2)), floR and tetA(G) genes reported in the SG1 region of S. Typhimurium DT104, U302 and some other serotypes are still predominantly limited to S. Typhimurium strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism’s phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation—another method used to modulate gut composition and function—could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.